
Generative Skill Chaining: Long-Horizon Skill
Planning with Diffusion Models

Utkarsh A. Mishra, Shangjie Xue, Yongxin Chen, Danfei Xu
Georgia Institute of Technology

Email:{umishra31,xsj,yongchen,danfei}@gatech.edu

Abstract: Long-horizon tasks, usually characterized by complex subtask depen-
dencies, present a significant challenge in manipulation planning. Skill chaining
is a practical approach to solving unseen tasks by combining learned skill pri-
ors. However, such methods are myopic if sequenced greedily and face scalability
issues with search-based planning strategy. To address these challenges, we in-
troduce Generative Skill Chaining (GSC), a probabilistic framework that learns
skill-centric diffusion models and composes their learned distributions to generate
long-horizon plans during inference. GSC samples from all skill models in parallel
to efficiently solve unseen tasks while enforcing geometric constraints. We evalu-
ate the method on various long-horizon tasks and demonstrate its capability in rea-
soning about action dependencies, constraint handling, and generalization, along
with its ability to replan in the face of perturbations. We show results in simulation
and on real robot to validate the efficiency and scalability of GSC, highlighting its
potential for advancing long-horizon task planning. More details are available at:
https://utkarshmishra04.github.io/generative-skill-chaining.

Keywords: Manipulation Planning, Diffusion Models, Task and Motion Planning

1 Introduction

Long-horizon reasoning is crucial in solving real-world manipulation tasks that involve complex
inter-step dependencies. An illustrative example is shown in Figure 1(bottom), where a robot must
reason about the long-term effect of each action choice, such as the placement pose of the object
and how to grasp and use the tool, in order to devise a plan that will satisfy various environment
constraints and the final task goal (place object under rack). However, finding a valid solution often
requires searching in a prohibitively large planning space that expands exponentially with the task
length. Task and Motion Planning (TAMP) methods address such problems by jointly searching for
a sequence of primitive skills (e.g., pick, place, and push) and their low-level control parameters.
While effective, these methods require knowing the underlying system state and the kinodynamic
models of the environment, making them less practical in real-world applications. This work seeks
to develop a learning-based skill planning approach to tackle long-horizon manipulation problems.

Prior learning approaches that focus on long-horizon tasks often adopt the options framework [1, 2]
and train meta-policies with primitive skill policies as their temporally-extended action space [3–8].
However, the resulting meta policies are task-specific and have limited generalizability beyond the
training tasks. A number of recent works turn to skill-level models that can be composed to solve
new tasks via test-time optimization [9–15]. Key to their successes are skill-chaining functions that
can determine whether each parameterized skill can lead to states that satisfy the preconditions of
the next skills in a plan, and eventually the success of the overall task. However, these methods
are discriminative, meaning that they can only estimate the feasibility of a given plan and requires
an exhaustive search process to solve a task. This bottleneck poses a severe scalability issue when
dealing with increasingly complex and long skill sequences.

https://utkarshmishra04.github.io/generative-skill-chaining

Transition Feasibility Skill Affordability

Pick
Hook

Pull
Box Using Hook

Place
Hook

Pick
Box

Place
Box

Pick
Hook

Push
Box Using Hook

Initial
State

Figure 1: (Top) Generative Skill Chaining (GSC) aims to solve a long-horizon task for a given se-
quence of skills by using linear probabilistic chains to parallelly sample from a joint distribution of
multiple skill-specific transitions qπ(s, a, s′) learned using diffusion models. The framework implic-
itly considers transition feasibility and subsequent skill affordability while demonstrating flexible
constraint-handling abilities. (Bottom) An example of a long-horizon TAMP problem composed of
multiple skills. Such a task necessitates reasoning inter-dependencies between actions.

In this paper, we propose a generative and compositional framework that allows direct sampling of
valid skill chains given a plan skeleton. Key to our method is skill-level probabilistic generative
models that capture the joint distribution of precondition - skill parameter - effect of each skill.
Sampling a valid skill chain boils down to, for each skill in a plan, conditionally generating skill
parameters and post-condition states that satisfy the pre-condition of the next skill, constrained by
the starting state and the final goal. The critical technical challenge is to ensure that the sequence
of skill parameters is achievable from the initial state (forward flow) to satisfy the long-horizon
goal (backward flow) and account for additional constraints.

To this end, we introduce Generative Skill Chaining (GSC), a framework to train individual skill
diffusion models and combine them according to given unseen task skeletons with arbitrary con-
straints at test time. Each skill is trained as an unconditional diffusion model, and the learned distri-
butions are linearly chained to solve for an unseen long-horizon goal during evaluation. Further, we
employ classifier-based guidance to satisfy any specified constraints. GSC brings a paradigm shift
in the approaches used to solve TAMP problems to date and uses probabilistic models to establish
compositionality and reason for long-horizon dependencies without being trained on any such task.
We demonstrate the efficiency of GSC on three challenging manipulation task domains, explore its
constraint handling advantages, and deploy a closed-loop version on a physical robot hardware to
show generalization capabilities and robustness.

2 Related Work

Task and Motion Planning. Understanding inter-dependencies between sequential actions is a fun-
damental challenge in solving long-horizon problems. The key idea for solving them is to break
the planning problem into a symbolically feasible sequence of smaller subtasks [1–3, 7, 8] and
characterize their solutions with primitive actions or skills [4–6]. Such approaches rely on formu-
lating fully-observable conditions and accurate system dynamics forecasting [16, 17] to realize the
precondition of applying skill (affordability) and its effect respectively [18–24]. In this direction,
logic-geometric programming [25, 26] and hierarchical [27] frameworks have solved for the sym-
bolic feasibility [18, 28, 29] of a sequence of skills sufficient to reach a goal condition from the initial
state. While such methods are exhaustive, their strong assumptions limit their practical applications
and scalability. To overcome this, we opt for a learning-based framework [11, 30].

2

Learning to solve long-horizon tasks. Skill-chaining methods model pre- and post-conditions of
pre-defined skills to search for feasible goal-reaching plans, but most methods have focused on
single-task settings [9–15]. Recent methods have investigated composable skill models to learn
multi-task planner [11, 27, 30]. However, such methods are discriminative and require exhaustive
searches. Moreover, their auto-regressive nature leads to cascading errors and large exploration
spaces as the tasks become long. Recently, Agia et al. [11] proposed a CEM-based skill-chaining
strategy that maximizes the success of individual actions in the sequence by training individual
skills as RL agents. Their method is still limited to trained policy (deterministic) priors, lack finding
multi-modal solutions, and cannot account for additional planning constraints.

Generative models for planning. Generative models have been widely used for planning with
Gaussian processes [31] and adversarial networks [32, 33]. With recent advancements in diffusion
model-based generative strategies for planning in robotics, such approaches have been adopted for
imitation learning [34–38] and offline reinforcement learning [39, 40] settings. Most relevant to
this work are Diffuser [39], Decision Diffuser [40] and Diffusion Policy [37]. While
they can synthesize sequences of “states” (and/or “actions”) as plans and optionally account for
constraints [40], such approaches still focus on capturing the distribution of training task solutions
and cannot easily solve unseen new tasks. In this work, we introduce a compositional [41, 42]
generative planning method that can flexibly combine skill-level generative model and generalize to
new tasks and constraints introduced during inference time. The proposed framework is inspired by
the recent work on generating high-quality extended image chains with parallel diffusion [43] and
scalable diffusion models with transformers [44].

3 Preliminaries

Problem formulation. We formulate the skill chaining problem by considering a given symboli-
cally feasible skeleton ΦK = {(π1, o1), (π2, o2), . . . , (πK , oK)} of skills from a pre-defined library
π1:K ∈ Π and the set of objects o on which the skill operates. Each skill π ∈ Π is parameterized by
a continuous set of feasible skill parameters a ∈ Aπ governing the desired motion while executing
the skill from a state s in the state space S. The goal is to find optimal skill parameters such that
the skeleton is geometrically feasible and the effect of each skill satisfies the precondition of the
following skills while the goal condition is satisfied.

Environment setup. We use expert policies to solve individual skills and collect state-action-state
transitions between current (s ∈ S) and next state (s′ ∈ S) resulting from the execution of a skill π
with parameters aπ ∈ Aπ by following the transition model Tπ : S × Aπ → S . Further, following
previous work [11], we consider a selection of basic objects like a hook, a rack, and boxes of various
dimensions to construct the environmental setup. The state of the environment consists of fully
observable poses and sizes of each of the present objects.

Diffusion models. The diffusion model is a parameterized model pθ(x0) that estimates an unknown
distribution q(x0) using the samples x0 ∼ q0(x0). It consists of two diffusion processes: a forward
noising and a reverse denoising process. The forward process progressively injects i.i.d. Gaussian
noise to samples from q0(x0) and leads to a family of noised distributions qt(xt). The distribution
of xt conditioned on the clean data x0 is also a Gaussian: q0t(xt|x0) = N (xt; x0, σ2

t I), where
σt defines a fixed series of noise levels monotonically increasing w.r.t. forward diffusion t. The
reverse denoising process recovers clean data by iteratively removing the added noise by a process
represented as the following stochastic differential equation (SDE) [45–47]:

dx = −2σ̇tσt∇x log qt(xt)dt+
√

2σ̇tσtdw (1)

where ∇x log qt(xt) is referred to as the score function of the noised distribution and wt is a standard
Wiener process. We follow DDPM [48] sampling strategy in continuous settings [49]. The score
function allows recovery of the minimum mean squared error estimator of x0 given xt [50, 51]:

x̃0 := E[x0|xt] = xt + σ2
t∇xt log qt(xt), (2)

3

where we can treat x̃0 as a “denoised” version of xt at timestep t. In practice, the unknown score
function is estimated using a neural network ϵθ(xt, t) by minimizing the denoising score match-
ing [49] objective Et,x0 [λ(t)∥σt∇xt log q0t(xt|x0) − ϵθ(xt, t)∥2] where λ(t) is a time-dependent
weight. Diffusion models are scalable, and the learned distributions represent all positive samples
satisfying the distribution heuristic, thus multi-modal. Further, their simple probabilistic represen-
tation allows a wide range of flexible sampling strategies [47, 48, 52, 53] combined with constraint-
handling abilities [40, 54–56].

4 Methodology

Generative Skill Chaining (GSC) offers a new paradigm for approaching long-horizon planning
with a given skeleton of skills. The primary objective of GSC is to determine the optimal skill
parameters for an unseen task skeleton, such that executing the plan achieves a long-horizon goal
while satisfying task-specific constraints. It introduces probabilistic chaining of distributions of
short-horizon transitions to sample from a long-horizon trajectory distribution. GSC uses skill-level
diffusion models to represent each skill’s joint distribution of precondition, control parameters, and
effect. Further, the framework composes individual skills at inference time to form a sequence-
level trajectory distribution, which can be sampled via parallel diffusion to generate feasible skill
parameter sequences as planning solutions. This is different from the widely used auto-regressive
heuristic-search-based approach [17, 57–59] used in prior works [11, 30].

(a)

(b)

Figure 2: (a) A linear chain
graph for a long sequence of
transitions and (b) adding an
additional constraint node.

We consider a given skeleton Φ of skills (and relevant objects)
which satisfies the symbolic feasibility of the sequence in the en-
vironment. The primary goal is to generate the sequence of states
and skill parameters (as shown in Figure 2(a)) such that the final
state (here sf ≡ s(2)) satisfies a goal condition and leads to the
successful execution of the last skill.

Action primitives as diffusion models. We characterize the in-
dividual skills by the nature of state-action-state transitions ob-
served while executing it in the environment. The operation of
each skill π can then be represented by an unconditional distribu-
tion qπ(st, at, s′t). Such a representation simultaneously captures
the skill policy Pπ and the transition dynamics distribution Tπ and
ensures their consistency. For each skill π in the skill library, we
train a diffusion model score function ϵπ(st, at, s′t, t) with trans-
former backbone as shown in Figure 3 (right) using provided per-skill demonstration data. We
represent the set of objects of interest by an order which denotes the relevance of the objects in the
scene w.r.t. the skill1 [11]. We also denote the masked sampling score model for the states and
action as ϵπ(st, t), ϵπ(s′t, t) and ϵπ(at, t) respectively.

Sequencing skill diffusion models. To solve our objective of finding a sequence of suitable skill
transitions which satisfies Φ, an auto-regressive approach primarily used in prior works follows:

pΦ(s(0:2), a(0:1)|s(0)) ≡ Pπ1
(a(0)|s(0)) Tπ1

(s(1)|s(0), a(0)) Pπ2
(a(1)|s(1)) Tπ2

(s(2)|s(1), a(1))

However, such formulations are myopic and can only be rolled out in the forward direction with-
out feedback from the final task goal. This limits long-horizon reasoning, and prior methods have
leveraged random [30] or CEM-based rollouts [11] to sample from such a distribution. To overcome
the above limitations, we transform the unconditional skill diffusion models into a forward and a
backward conditional distribution, as

pΦ(s(0:2), a(0:1)|s(0)) ∝ qπ1
(s(0), a(0), s(1))qπ2

(a(1), s(2)|s(1)) = qπ1
(s(0), a(0), s(1))qπ2

(s(1), a(1), s(2))
qπ2(s(1))

1For example, if there is a hook (1), a box (2) and a rack (3) in the environment, then the object order
corresponding to tasks are: (a) pick the box: [2, 1, 3], (b) Place Box on Rack: [2, 3, 1].

4

Unconditional Skill Score Function

Time
Embedding

Positional
Embedding

Skill Object
Order Flattened De-Flattened

Pick
(Hook, Table)

Place
(Red Box, Rack)

Pull
(Hook, Blue Box)

Push
(Hook, Blue Box,

Rack)

Figure 3: Left The primitive skills and their executions are shown with the objects of interest.
Right Transformer-based skill diffusion model. We use the noisy state-action-state distribution
xt ∼ {st, at, s′t} at diffusion step t to obtain the corresponding ϵθ during sampling. The skill object
order depends on the objects of interest and is represented as a collection of one-hot vectors.

pΦ(s(0:2), a(0:1)|s(2)) ∝ qπ1(s
(0), a(0)|s(1))qπ2(s

(1), a(1), s(2)) =
qπ1

(s(0), a(0), s(1))qπ2
(s(1), a(1), s(2))

qπ1
(s(1))

In both equations above, the relations implicitly give rise to the notion of skill affordability and
transition feasibility, i.e., the resulting state from the one skill must lie in the initial state distribution
of the next skill and vice-versa. Now, if we transform the probabilities into their respective score
functions (∇x log q(x)) for a particular reverse diffusion sampling step t, we obtain:

ϵΦ(s
(0)
t , a(0)t , s(1)t , a(1)t , s(2)t , t) = ϵπ1

(s(0)t , a(0)t , s(1)t , t) + ϵπ2
(s(1)t , a(1)t , s(2)t , t)− ϵπ2

(s(1)t , t) (3)

ϵΦ(s
(0)
t , a(0)

t , s(1)t , a(1)t , s(2)t , t) = ϵπ1(s
(0)
t , a(0)t , s(1)t , t) + ϵπ2(s

(1)
t , a(1)t , s(2)t , t)− ϵπ1(s

(1)
t , t) (4)

respectively. Finally, we linearly combine the score functions from the forward and backward dis-
tributions weighted by a dependency factor γ:

ϵΦ(s
(1)
t , t) = γπ1 ϵπ1(s

(1)
t , t) + (1− γπ1) ϵπ2(s

(1)
t , t), (5)

Here, γ ∈ [0, 1] is a decision variable that balances the influence of the state in the transition of the
skill w.r.t. the subsequent skill and the goal condition. This is an important aspect that governs the
behavior of the skills in the sequence and the choice of their respective parameters.

Classifier-based guidance for constraint satisfaction. Besides the final task goal, constraints play
an important role in governing the feasibility of actions in the environment and specifying task-
specific conditions, such as maximizing/minimizing the distance between two objects in an interme-
diate or final state. Our diffusion model-based formation allows GSC to easily incorporate additional
constraints as implicit (in-painting) or explicit (classifier-based) guidance. Here we present a flex-
ible sampling strategy in the presence of several planning constraints. In principle, the additional
constraints Ψ can be appended as additional terms in the target sampling distribution:

pΦ,Ψ(s(0:2)) ∝ pΦ(s(0:2)|s(0)) h({s, a}Ψ)

where h(·) is the likelihood of the constraint acting on a set of state-action nodes given by {s, a}Ψ.
The corresponding diffusion score function with the added constraints becomes

ϵΦ,Ψ(s
(0)
t , a(0)t , s(1)t , a(1)

t , s(2)t , t) = ϵΦ(s
(0)
t , a(0)t , s(1)t , a(1)

t , s(2)t , t) + ϵΨ({st, at}, t) (6)

where ϵΨ({st, at}, t) ∝ ∇{st,at} log h({st, at}Ψ). Consider the example shown in Figure 2(b) where
the constraint depends on the nodes a(0), a(1) and s(2). Suppose the constraint is chosen to be a
binary indicator (i.e. success = 1) of satisfaction and is defined for the denoised samples (a(0)

0 , a(1)0

5

and s(2)0) at t = 0. In such a situation, the likelihood is defined as the exponential of the constraint
satisfaction such that

hΨ(a
(0)
0 , a(1)0 , s(2)0) = exp

[
− α

(
1−Ψ(a(0)0 , a(1)

0 , s(2)0)
)]

(7)

It is worth noting that while the constraint is a function of the denoised samples, the gradients
must be calculated w.r.t. the noised samples. We calculate this by first obtaining the denoised
sample x̃ for the diffusion step t from Equation 2 and then modifying the corresponding nodes in
ϵΦ(s

(0)
t , a(0)t , s(1)t , a(1)t , s(2)t , t) based on the weight factor α, as

ϵ̃Φ(a
(0)
t , a(1)t , s(2)t , t) = ϵΦ(a

(0)
t , a(1)t , s(2)t , t)− α∇a(0)t ,a(1)t ,s(2)t

(
1−Ψ(ã(0)0 , ã(1)

0 , s̃(2)0)
)

(8)

Summary. To summarize, the proposed framework GSC is divided into three segments: (1) train
individual skill diffusion models with the proposed architecture without any knowledge about other
skills, (2) chain skill diffusion models according to an unseen task skeleton during inference using
probabilistic linear chaining of the individually learned distributions with a dependency factor, and
(3) incorporate classifier-based guidance for any unseen planning constraint added while inference.
Following standard reverse denoising, we consider parallelly sampling from all individual models
instead of one and hence our proposed approach is both task-skeleton and skeleton-length agnostic.
Further, the dependency factor helps in making flexible design choices for satisfying the desired
goal condition. While a constant value of γ = 0.5 is sufficient, it can be fine-tuned for every
skill. In addition to the above, we also collect failure data to train a success probability prediction
module Q(s, s′) : S ×S → [0, 1] for each skill which is a measure of the successful execution of the
skill given the current and the transitioned state. Such a model is used to consider the best parameter
sequence from the sampled candidate solutions. We illustrate the overall algorithm in Appendix A.

5 Results

We conduct experiments to validate the efficacy of GSC in (1) long-horizon planning for unseen
tasks of arbitrary lengths, (2) constraint handling and satisfaction, and (3) maximizing action-
dependency horizon and finally (4) generalization to perturbations. First, we show the compositional
and constraint-handling performance of GSC in a toy domain. Second, we evaluate the performance
of the chaining trained skill diffusion models on nine standard TAMP tasks introduced by previous
work [11]. These tasks encompass a wide range of skeleton lengths and challenge the method on
various levels of long-horizon dependency. Finally, we discuss the response of GSC to perturbations,
followed by the importance of dependency factor γ in the success of GSC.

Baselines and metrics. In the context of skill chaining, we primarily consider search-based meth-
ods with CEM optimization strategy. Our main baselines are CEM methods with uniform pri-
ors (Random CEM) and learned policy priors (STAP). Further, to show improvement in perfor-
mance as compared to training on task sequences and expecting generalization to new ones, we add
DAF’s [30] performance following Agia et al. [11]. Another potential baseline is using diffusion for
states only and inverse dynamics model for actions based on Decision Diffuser [40]. However, due
to considerable distribution shift and cascading error from state predictions, such a method does not
perform well (refer to Appendix B). The success rate of satisfying the goal condition in 100 random
environment executions is used as the comparison metric2.

Toy domain. Consider a 2D toy domain consisting of states as the s ≜ (x, y) position of a
point sample and the action, a = [u, v] ∈ R2, as the direction of the unit vector (u, v). A tran-
sition is defined by s′ = s + [u, v]. As a proof-of-concept for skill-chaining we construct four
different state (2D points) distributions Figure 4(a) and skills represented by unit vectors. We
train two diffusion models Figure 4(b) to represent skill models: (1) One with transitions from
red square to two circles. This is analogous to training a “pick hook” skill which is a pre-condition
for both “pull” and “push”. (2) Other with the transition from bottom circle to green square. This

2We consider the same results for baselines as demonstrated in previous work [11].

6

is analogous to training only “push” (or “pull”). Now we merge both of these transitions to sam-
ple candidate solutions for the skeleton (pick hook, push block). When sampled parallelly, the
first diffusion model (pick skill) will sample post-conditions from both the circles (push and pull)
whereas the second diffusion model (push) will sample pre-conditions only from the bottom circle.

(a)

(b)

(c)

(d)

(e)

GSC

domain

learned skill models

generated combination
(fixed initial state)

w/ constraints for left
segment (final state)

w/ fixed final state

Figure 4: Toy Domain: We model
four distributions of states and seg-
ment one of them into left and right
segments. The above figure illustrates
diffusion model composition using
GSC with fixed start state and unit ac-
tions followed by the addition of soft
and hard constraint guidance.

So, eventual outcome will be from red square to bottom
circle to green square (state sequence where hook is picked
such that block can be pushed). Further, we validate the
constraint satisfaction performance by imposing conditions
of “fixed initial state”‘ and sampling the chain Figure 4(c).
We then limit the goal states by imposing conditions that
goal state variables must lie on the left half of the green
square distribution Figure 4(d). Finally, we fix both initial
and goal states Figure 4(e). This samples a single solution.
(as the states, 2D points, are connected via unit vectors with
direction as the skill parameter)

Long-horizon manipulation. We consider TAMP prob-
lems in a PyBullet [60] environment and follow the tasks
proposed by STAP [11], namely: (i) Hook Reach: The
hook is used to pull a box followed by executing other skills
on the box. (ii) Constrained Packing: Multiple boxes
should be placed on the rack so that all of them can be
accommodated without interference. (iii) Rearrangement
Push: A sequence of placement and push using a hook
is executed to bring a box below the rack. The proposed
three skeletons for each category above are solved using
our method and compared against the previous work and
their baselines w.r.t. the success rate is shown in Table 1. These tasks are unseen while training,
have varying skeleton lengths, and demand reasoning long-horizon action dependencies. The per-
formance of GSC implies that it is better than (or as good as) search-based methods, along with
other advantageous abilities. The details about the target skeletons and the desired transitions are
further explained in Appendix C.

Imposing additional constraints. In addition to the skeletons evaluated for the long-horizon prob-
lems and extending the experiments conducted for the toy domain, we impose certain planning
constraints on the final state, intermediate states, and actions. This is done by adding an objective
of maximizing the distance between all the “place” skill action parameters in the skeleton (this ad-
dition is still task agnostic) for the constrained packing task. The resulting sequence of states
is shown in Figure 5. Further, we compare cumulative task completion and constraint satisfaction
success rate with previous approaches in Table 2. This qualitatively and quantitatively demonstrates
that the framework can handle such unseen constraints in test time.

Table 1: The success rate of the proposed GSC algorithm is shown and compared with relevant
search-based baselines (CEM strategy). All results are calculated from 100 trials for each task.

Methods Hook Reach Rearrangement Push
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Random CEM 0.54 0.40 0.30 0.30 0.10 0.02
DAF (Generalization) 0.32 0.05 0.0 0.0 0.08 0.0
STAP (Policy CEM) 0.88 0.82 0.76 0.40 0.52 0.18
GSC (Ours) 0.84 0.84 0.76 0.68 0.60 0.18
Task Length 4 5 5 4 6 8

Generalizing to unseen sequences. We next highlight the generalization ability of GSC by evalu-
ating it on more complex unseen task plans. First, we increase the maximum horizon dependency of
action by changing the goal to position not only the box but also the hook in such a fashion which

7

Figure 5: For a constrained packing task of picking-and-placing all the boxes on the rack:
Task agnostic secondary placement objectives help in realizing accurate and consistent state-action
sequences in Top Simulation and Bottom open loop hardware rollouts.

Table 2: The success rate of GSC algorithm with and without task-agnostic constraint handling is
shown for Constrained Packing task and compared with relevant baselines.

Methods Constrained Packing
Task 1 Task 2 Task 3

Random CEM 0.45 0.45 0.10
DAF (Generalization) 0.45 0.70 0.0
STAP (Policy CEM) 0.65 0.68 0.20
GSC (Ours w/o constraint guidance) 0.70 0.80 0.50
GSC (Ours w/ constraint guidance) 0.75 1.0 1.0

complies with the success of the “push” skill in the rearrangement push domain. The resulting
state sequence is shown in Figure 1 (bottom). Secondly, we execute our algorithm in a closed-loop
fashion and use the skill success classifier to indicate sub-task completion. The sampled plan is
executed and the resulting state is checked for subsequent skill feasibility. In case, the state satisfies
the pre-condition for a future or previous skill, the plan is resampled from that skill to complete
the task. We demonstrate this perturbation experiment on a Franka Panda arm (video attached to
supplementary, hardware execution details in section 6).

Importance of the forward and backward dependency. The dependency variable γ governs the
flow of information from the initial state (forward) and the goal (backward) during the diffusion
process. We provide a qualitative study of this feature in Figure 6. In the case where the forward flow
information is weak (γ = 0), the model tends to hallucinate and predict states that are inconsistent
with the initial state. When the backward flow is weak (γ = 1), the model becomes myopic and
fails to solve the task.We empirically found that γ = 0.5 achieves a balanced performance.

Figure 6: Example of rearrangement push task rollout with different dependency factor γ: Top:
Hallucination (γ = 0) With a weak forward signal, the framework fails to realize correct position
of objects at the final stage. Bottom: Myopic (γ = 1) A weak backward information behaves like
policy shooting and fails to understand long-horizon dependency.

Implementation details. We have a fixed library of skills consisting of: pick, place, push and
pull. Each of the skills is parameterized with respect to the objects of interest according to the
following setup:

8

pick: Parameterized by (x, y, z, θ) as the pick location and the gripper’s orientation around the z-
axis. The parameters are calculated with respect to the object of interest’s (to be picked) origin. For
example, pick block is w.r.t. the origin of the block, which is the centroid. Similarly, for pick
hook, the origin is the center of the rectangle, of which the hook is one L-segment.

place: Parameterized by (x, y, z, θ) as the place location and the gripper’s orientation around the
z-axis. The parameters are calculated with respect to the object of interest’s (on which the picked
object will be placed) origin.

push: Parameterized by (x, y, θ, r) as the location and orientation of the placement of the tool (hook)
on the table (z = 0) and r denotes the length by which the hook will be displaced away from the
arm base. The parameters x, y, θ are w.r.t. the object of interest’s (to be pushed) origin. The push
distance r is the position displacement of the tool in direction θ.

pull: Parameterized by (x, y, θ, r) as the location and orientation of the placement of the tool (hook)
on the table (z = 0) and r denotes the length by which the hook will be displaced towards the arm
base. The parameters x, y, θ are w.r.t. the object of interest’s (to be pulled) origin. The pull distance
r is the position displacement of the tool in direction θ.

An example of the pre-condition and effect of the above skills are shown in Figure 3 (left). In ad-
dition, the performance of the proposed skill sequencing framework depends on the diversity of the
expert dataset, the maximum horizon dependency of action in the unseen skeleton, and the quality
of the trained skill diffusion models. Furthermore, only the true distributions are estimated and used
to sample candidate solutions. To ensure high-success probability for all our tasks, we consider
sampling multiple candidate sequence solutions (two of them are shown in Figure 7) and consider
the best probable solution based on the product of individual skill success probability metric.

Pick Box Place Box s.t. Pushable Pick Box Place Box s.t. Pushable

Figure 7: For a “pick-place” task of picking-and-placing the cyan box such that it can be pushed
inside the rack: Left A correctly sampled state sequence while Right is incorrect. Hence, filtering
candidate solutions is necessary.

6 Data Collection and Real-World Experiment Details

Figure 8: Hardware Experiment
Setup

We collect transition data in simulation from a random
agent. For every selected skill (“pick”, “place”, “push”
and “pull”), we start with a suitable state satisfying its pre-
condition and collect successful skill parameters (from ran-
dom samples) and effect (resulting next state). This is done
for scenes containing a varied number of objects. We col-
lect around 5000 successful transitions from the simulator.
The data is used to train the diffusion model. The success
probability prediction module Q(s′, s) is also trained on the
same data, but we add the failure transitions as well.

For real-world experiments, we use pose detection using
AprilTag [61] followed by a real-to-sim scene reconstruc-
tion. The experimental setup, illustrated in Figure 8, en-
compasses a Franka Panda robot arm and an Intel Re-
alSense camera, several blocks, a rack, and a hock. The
camera is positioned overhead, facing downward to fully

9

observe the poses of all the objects. AprilTag [61] is employed for SE(3) pose detection of the ob-
jects. During planning, the Frankx controller is utilized to generate smooth linear motion toward the
desired gripper pose. All the experiments are performed with pre-trained diffusion models (trained
on simulated data). The closed-loop planning in the real world is performed in the reconstructed
scene in the simulator, and planned skill parameters are executed directly in the real world. The
scene is updated before each replanning phase.

7 Limitations

The proposed framework considers planning with a given skeleton. While we do not solve the
complete TAMP problem, our method is compatible with any skeleton-planning method and hence
is a crucial segment of a unified framework for solving TAMP problems. Further, we only validated
on a fully observable environment setup with no degree of partial observability and operates on low-
dimensional state space of the system i.e. 6-DoF poses of the objects. We use a fixed set of primitive
skills, and thus, the framework requires either expert data to train models or the pre-trained models to
perform compositional planning. This can be extended by incorporating skill discovery frameworks.

8 Conclusion

We introduced GSC, a new paradigm to solve TAMP tasks with given skeletons using skill-centric
diffusion models. GSC trains high-quality skill diffusion models using a transformer backbone and
composes skeleton-specific distributions for unseen skeletons by chaining trained individual skill
distribution. Such skeleton-specific distributions are then used to generate long-horizon param-
terized skill plan sequences. The framework is scalable and flexible and shows better constraint-
handling capacities, and generalizes well to new scenarios, including perturbations and replanning.

10

References
[1] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for tem-

poral abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[2] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
conference on artificial intelligence, volume 31, 2017.

[3] D. Shah, P. Xu, Y. Lu, T. Xiao, A. Toshev, S. Levine, and B. Ichter. Value function spaces:
Skill-centric state abstractions for long-horizon reasoning. arXiv preprint arXiv:2111.03189,
2021.

[4] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives
for diverse manipulation tasks. In 2022 International Conference on Robotics and Automation
(ICRA), pages 7477–7484. IEEE, 2022.

[5] N. Vuong, H. Pham, and Q.-C. Pham. Learning sequences of manipulation primitives for
robotic assembly. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 4086–4092. IEEE, 2021.

[6] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned
task schemas. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 1149–1155. IEEE, 2020.

[7] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
Advances in neural information processing systems, 31, 2018.

[8] W. Masson, P. Ranchod, and G. Konidaris. Reinforcement learning with parameterized actions.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[9] Y. Lee, J. J. Lim, A. Anandkumar, and Y. Zhu. Adversarial skill chaining for long-horizon robot
manipulation via terminal state regularization. In 5th Annual Conference on Robot Learning,
2021. URL https://openreview.net/forum?id=K5-J-Espnaq.

[10] Y. Lee, S.-H. Sun, S. Somasundaram, E. S. Hu, and J. J. Lim. Composing complex skills by
learning transition policies. In International Conference on Learning Representations, 2019.

[11] C. Agia, T. Migimatsu, J. Wu, and J. Bohg. Taps: Task-agnostic policy sequencing. arXiv
preprint arXiv:2210.12250, 2022.

[12] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demonstration by
constructing skill trees. The International Journal of Robotics Research, 31(3):360–375, 2012.

[13] A. Bagaria and G. Konidaris. Option discovery using deep skill chaining. In International
Conference on Learning Representations, 2020.

[14] G. Konidaris and A. Barto. Skill discovery in continuous reinforcement learning domains using
skill chaining. Advances in neural information processing systems, 22, 2009.

[15] A. Clegg, W. Yu, J. Tan, C. K. Liu, and G. Turk. Learning to dress: Synthesizing human
dressing motion via deep reinforcement learning. ACM Transactions on Graphics (TOG), 37
(6):1–10, 2018.

[16] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE, 2017.

[17] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. Advances in neural information processing
systems, 31, 2018.

11

https://openreview.net/forum?id=K5-J-Espnaq

[18] L. P. Kaelbling and T. Lozano-Pérez. Learning composable models of parameterized skills.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 886–893.
IEEE, 2017.

[19] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer. Search-based task
planning with learned skill effect models for lifelong robotic manipulation. In 2022 Interna-
tional Conference on Robotics and Automation (ICRA), pages 6351–6357. IEEE, 2022.

[20] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Perez, L. P. Kaelbling, and J. Tenen-
baum. Inventing relational state and action abstractions for effective and efficient bilevel plan-
ning. arXiv preprint arXiv:2203.09634, 2022.

[21] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols: Learning symbolic
representations for abstract high-level planning. Journal of Artificial Intelligence Research, 61:
215–289, 2018.

[22] V. Xia, Z. Wang, and L. P. Kaelbling. Learning sparse relational transition models. arXiv
preprint arXiv:1810.11177, 2018.

[23] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling. Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research, 29:309–352, 2007.

[24] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Active model learning and
diverse action sampling for task and motion planning. In 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 4107–4114. IEEE, 2018.

[25] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined
task and motion planning. In IJCAI, pages 1930–1936, 2015.

[26] D. Driess, O. Oguz, and M. Toussaint. Hierarchical task and motion planning using logic-
geometric programming (hlgp). In RSS Workshop on Robust Task and Motion Planning, 2019.

[27] D. Driess, J.-S. Ha, and M. Toussaint. Learning to solve sequential physical reasoning prob-
lems from a scene image. The International Journal of Robotics Research, 40(12-14):1435–
1466, 2021.

[28] B. Ames, A. Thackston, and G. Konidaris. Learning symbolic representations for planning
with parameterized skills. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 526–533. IEEE, 2018.

[29] T. Migimatsu, W. Lian, J. Bohg, and S. Schaal. Symbolic state estimation with predicates for
contact-rich manipulation tasks. In 2022 International Conference on Robotics and Automation
(ICRA), pages 1702–1709. IEEE, 2022.

[30] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and L. Fei-Fei. Deep affor-
dance foresight: Planning through what can be done in the future. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 6206–6213. IEEE, 2021.

[31] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models
of robot skills for task and motion planning. The International Journal of Robotics Research,
40(6-7):866–894, 2021.

[32] T. Kurutach, A. Tamar, G. Yang, S. J. Russell, and P. Abbeel. Learning plannable representa-
tions with causal infogan. Advances in Neural Information Processing Systems, 31, 2018.

[33] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

12

[34] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta,
B. Ichter, et al. Scaling robot learning with semantically imagined experience. arXiv preprint
arXiv:2302.11550, 2023.

[35] I. Kapelyukh, V. Vosylius, and E. Johns. Dall-e-bot: Introducing web-scale diffusion models
to robotics. IEEE Robotics and Automation Letters, 2023.

[36] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan,
I. Momennejad, K. Hofmann, et al. Imitating human behaviour with diffusion models. arXiv
preprint arXiv:2301.10677, 2023.

[37] C. Chi, S. Feng, Y. Du, Z. Xu, E. A. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. ArXiv, abs/2303.04137, 2023.

[38] Y. Du, M. Yang, B. Dai, H. Dai, O. Nachum, J. B. Tenenbaum, D. Schuurmans, and P. Abbeel.
Learning universal policies via text-guided video generation. ArXiv, abs/2302.00111, 2023.

[39] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. In International Conference on Machine Learning, 2022.

[40] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

[41] N. Liu, S. Li, Y. Du, A. Torralba, and J. B. Tenenbaum. Compositional visual generation with
composable diffusion models. In European Conference on Computer Vision, pages 423–439.
Springer, 2022.

[42] Y. Du, C. Durkan, R. Strudel, J. B. Tenenbaum, S. Dieleman, R. Fergus, J. Sohl-Dickstein,
A. Doucet, and W. S. Grathwohl. Reduce, reuse, recycle: Compositional generation with
energy-based diffusion models and mcmc. In International Conference on Machine Learning,
pages 8489–8510. PMLR, 2023.

[43] Q. Zhang, J. Song, X. Huang, Y. Chen, and M.-Y. Liu. Diffcollage: Parallel generation of large
content with diffusion models. ArXiv, abs/2303.17076, 2023.

[44] W. Peebles and S. Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

[45] T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of diffusion-based
generative models. arXiv preprint arXiv:2206.00364, 2022.

[46] S. Särkkä and A. Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

[47] Q. Zhang, M. Tao, and Y. Chen. gddim: Generalized denoising diffusion implicit models.
arXiv preprint arXiv:2206.05564, 2022.

[48] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[49] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gen-
erative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020.

[50] S. Saremi and A. Hyvarinen. Neural empirical bayes. arXiv preprint arXiv:1903.02334, 2019.

[51] C. M. Stein. Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, pages 1135–1151, 1981.

[52] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

13

[53] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. arXiv
preprint arXiv:2204.13902, 2022.

[54] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[55] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in
Neural Information Processing Systems, 34:8780–8794, 2021.

[56] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: In-
painting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11461–11471, 2022.

[57] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1714–1721, 2017. doi:
10.1109/ICRA.2017.7989202.

[58] Pourchot and Sigaud. CEM-RL: Combining evolutionary and gradient-based methods for pol-
icy search. In International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=BkeU5j0ctQ.

[59] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based pol-
icy optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/

5faf461eff3099671ad63c6f3f094f7f-Paper.pdf.

[60] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2021.

[61] J. Wang and E. Olson. AprilTag 2: Efficient and robust fiducial detection. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October
2016.

14

http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/ICRA.2017.7989202
https://openreview.net/forum?id=BkeU5j0ctQ
https://openreview.net/forum?id=BkeU5j0ctQ
https://proceedings.neurips.cc/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
http://pybullet.org

A Summary of the Algorithm

Algorithm 1: Generative Skill Chaining (GSC) Algorithm
1 Hyperparameters:
2 Number of reverse diffusion steps T
3 Forward-backward dependency factor γ
4 Gradient score function weight α

5 Inputs:
6 Pre-defined skill library Π = {π1, π2, . . . , πM}
7 Individual skill diffusion score functions ϵπ
8 Task skeleton Φ = {π0, π1, . . . , πK} be a sequence of skills of length K

9 Initial state s(0)
10 Goal condition g

11 Constraints h({s, a}): suppose {s, a} = [s(1), a(2), s(K)] be the nodes affected by constraint

12 Initial skeleton solution xT = [s(0)T , a(0)T , s(1)T , a(1)T , . . . , s(K)
T] sampled from N (0, I)

13 Initialize t = T
14 while t ≥ 0 do

15 // Score of skeleton sequence
16 ϵΦ(s

(0)
t , a(0)t , s(1)t , a(1)

t , . . . , s(K)
t , t) = 0

17 for i = 1 : K do
18 // Update subvectors of ϵΦ
19 ϵΦ(s

(i−1)
t , a(i−1)

t , s(i)t , t) = ϵΦ(s
(i−1)
t , a(i−1)

t , s(i)t , t) + ϵπi
(s(i−1)

t , a(i−1)
t , s(i)t , t)

20 ϵΦ(s
(i)
t , t) = ϵΦ(s

(i)
t , t)−

(
γϵπi

(s(i)t , t) + (1− γ)ϵπi+1
(s(i)t , t)

)
21 end

22 // Constraint handling
23 for v ∈ [s(1), a(2), s(K)] do
24 // Update subvectors of ϵΦ
25 ϵΦ(vt, t) = ϵΦ(vt, t)− α∇vt log h(s̃

(1), ã(2), s̃(K))
26 end

27 // Obtain denoised samples
28 x̃0 = xt + σtϵΦ(s

(0)
t , a(0)t , s(1)t , a(1)t , . . . , s(K)

t , t)

29 // Get the updated noisy samples
30 q0(t−1)(xt−1|x̃0) = N (xt−1; x̃0, σ2

t−1I)
31 t = t− 1
32 end
33 Return x0

Hyperparameters and Computation The number of reverse diffusion timesteps is an important
parameters which plays a key role in deciding the time required to complete the sampling while
keeping up with the quality of the generated samples. While a lower number of steps reduces the
time taken for sampling, higher number of steps leads to finely denoised high-quality samples. We
try with numerous values (256, 128, 64, and 50) and converge to using 128 diffusion steps for
most of the tasks. The dependency factor γ is set to be 0.5 following the explanations described in
section 4 and section 5 (Figure 6). A value of γ = 1 makes GSC the same as a trivial policy rollout
approach. Finally, in case of gradients, we finetune the weights to balance the effect of constraints in
the reverse diffusion process. While it is difficult to drastically change the sampling trajectory due to
the intricacies of the reverse process, we use α = 1 for all our tasks with given planning constraints.

15

Individual Diffusion Model Score Function Hyperparameters

We follow the score-network architecture of DiT [44] and adopt to their open-source implementa-
tion: github.com/facebookresearch/DiT. We use the following hyperparameters for building
our score-network:

Table 3: Hyperparameters for Score-Network with Transformer Backbone

Hyper-parameter Value
Hidden Dimension 128
Number of Blocks 4
Number of Heads 4

MLP Ratio 4
Dropout Probability 0.1

Number of Input Channels 17
Number of Output Channels 17

B Additional Discussion

Decision diffuser approach: state diffusion model with inverse dynamics actions. Diffusion
models have been used for planning in robotics. One such framework is that of the decision dif-
fuser [40], which samples a desired state trajectory and uses an inverse dynamics model to find the
best action sequence. Our framework can achieve this by removing the action from the samples.
However, this results in the distribution generated by diffusion models to be disjoint from the ac-
tions given by the inverse dynamics models. This distribution shift is sensitive to the quality of the
sampled states and hence results in cascading errors. Considering a joint distribution of state-action-
state transitions is advantageous as it is less sensitive to such state perturbations.

16

github.com/facebookresearch/DiT

C Task Descriptions

As described in section 5, we evaluate our framework on three task domains (hook reach,
constrained packing, and rearrangement push) with three tasks each. In addition, we val-
idate the algorithm on a more complex skill with longer-horizon action dependency and describe
it as the fourth task under the domain of rearrangement push. Each of the considered suites
focuses on understanding long-horizon success of one particular skill. For example, hook reach

is about the long-term effect of executing hook, while constrained packing focusses on place

and rearrangement push focuses on push. Each task’s challenge is directly proportional to the
long-horizon action dependency required to complete it. For example, pull affects immediately
if the next skill is pick. But place affects the next skill after executing one intermediate skill
(like pick). Similarly, action dependency is after two skills for rearrangement push take 4. We
describe all of such considered tasks below.

Hook Reach Task 1 sub-sequence of Figure 9

• Scene: Box is out of workspace, Hook is inside workspace

• Goal: Pick the Box

• Skeleton: Pick Hook, Pull Box, Place Hook, Pick Box

Hook Reach Task 2 easy version of Figure 9

• Scene: Yellow Box is out of workspace, Blue Box inside the workspace, Hook is inside
workspace, Rack is inside workspace, Rack is empty

• Goal: Yellow Box on Rack

• Skeleton: Pick Hook, Pull Yellow Box, Place Hook, Pick Yellow Box, Place Yellow Box
on Rack

Hook Reach Task 3 shown in Figure 9

• Scene: Red Box is out of workspace, Hook is inside workspace, Rack is inside workspace,
Rack already has two blocks (Yellow and Blue)

• Goal: Red Box on Rack (without collision)

• Skeleton: Pick Hook, Pull Red Box, Place Hook, Pick Red Box, Place Red Box on Rack

Pick
Hook

Pull
Red Box Using Hook

Place
Hook

Pick
Red Box

Place
Red Box on Rack

Initial
State

Figure 9: Hook Reach Task 3

Constrained Packing Task 1 shown in Figure 10

• Scene: Three boxes in the workspace, Rack is in workspace, Blue block on Rack

• Goal: All Boxes on Rack (without collision)

• Skeleton: Pick Box, Place Box on Rack, Pick Box, Place Box on Rack, Pick Box, Place
Box on Rack

Constrained Packing Task 2 sub-sequence of Figure 11

17

Initial
State

Pick
Yellow Box

Place
Yellow Box

Pick
Red Box

Place
Red Box

Pick
Cyan Box

Place
Cyan Box

Figure 10: Constrained Packing Task 1

• Scene: Three boxes in the workspace, Rack is in workspace, Rack is empty

• Goal: Three Boxes on Rack (without collision)

• Skeleton: Pick Box, Place Box on Rack, Pick Box, Place Box on Rack, Pick Box, Place
Box on Rack

Constrained Packing Task 3 shown in Figure 11

• Scene: Four boxes in the workspace, Rack is in workspace, Rack is empty

• Goal: Four Boxes on Rack (without collision)

• Skeleton: Pick Box, Place Box on Rack, Pick Box, Place Box on Rack, Pick Box, Place
Box on Rack, Pick Box, Place Box on Rack

Initial
State

Pick
Red Box

Place
Red Box

Pick
Yellow Box

Place
Yellow Box

Pick
Cyan Box

Place
Cyan Box

Pick
Blue Box

Place
Blue Box

Figure 11: Constrained Packing Task 3

Rearrangement Push Task 1 shown in Figure 12

• Scene: Box in workspace, Hook in workspace, Rack outside workspace

• Goal: Box under Rack

• Skeleton: Pick Box, Place Box, Pick Hook, Push Box using Hook

Pick
Cyan Box

Place
Cyan Box

Pick
Hook

Push
Cyan Box using Hook

Initial
State

Figure 12: Rearrangement Push Task 1

Rearrangement Push Task 2 shown in Figure 13

• Scene: Three Boxes in workspace, Hook in workspace, Rack outside workspace

• Goal: Yellow Box under Rack

• Skeleton: Pick Hook, Place Hook, Pick Cyan Box, Place Cyan Box, Pick Hook, Push
Yellow Box using Hook

18

Initial
State

Pick
Hook

Place
Hook

Pick
Cyan Box

Place
Cyan Box

Pick
Hook

Push
Yellow Box using Hook

Figure 13: Rearrangement Push Task 2

Rearrangement Push Task 3 shown in Figure 14

• Scene: Four Boxes in workspace, Hook in workspace, Rack outside workspace

• Goal: Blue Box under Rack

• Skeleton: Pick Red Box, Place Red Box, Pick Yellow Box, Place Yellow Box, Pick Cyan
Box, Place Cyan Box, Pick Hook, Push Blue Box using Hook

Pick
Red Box

Place
Red Box

Push
Blue Box using Hook

Initial
State

Pick
Yellow Box

Place
Yellow Box

Pick
Cyan Box

Place
Cyan Box

Pick
Hook

Figure 14: Rearrangement Push Task 3

Rearrangement Push Task 4 shown in Figure 15

• Scene: Box outside workspace, Hook in workspace, Rack outside workspace

• Goal: Box under Rack

• Skeleton: Pick Hook, Pull Box using Hook, Place Hook, Pick Box, Place Box, Pick
Hook, Push Box using Hook

Pick
Hook

Pull
Box Using Hook

Place
Hook

Pick
Box

Place
Box

Pick
Hook

Push
Box Using Hook

Initial
State

Figure 15: Rearrangement Push Task 4

19

D Additional Results

One of the attractive aspects of diffusion models is to visualize convergence to a valid solution
starting from Gaussian noise. We visualize such results and show one of them below.

Figure 16: Reverse Diffusion visualization of Rearrangement Push Task 3 for 50 timesteps.

20

	Introduction
	Related Work
	Preliminaries
	Methodology
	Results
	Data Collection and Real-World Experiment Details
	Limitations
	Conclusion
	Summary of the Algorithm
	Additional Discussion
	Task Descriptions
	Additional Results

