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Abstract— The ability to manipulate objects in a desired
configurations is a fundamental requirement for robots to
complete various practical applications. While certain goals
can be achieved by picking and placing the objects of interest
directly, object reorientation is needed for precise placement
in most of the tasks. In such scenarios, the object must
be reoriented and re-positioned into intermediate poses that
facilitate accurate placement at the target pose. To this end,
we propose a reorientation planning method, ReorientDiff,
that utilizes a diffusion model-based approach. The proposed
method employs both visual inputs from the scene, and goal-
specific language prompts to plan intermediate reorientation
poses. Specifically, the scene and language-task information are
mapped into a joint scene-task representation feature space,
which is subsequently leveraged to condition the diffusion
model. The diffusion model samples intermediate poses based
on the representation using classifier-free guidance and then
uses gradients of learned feasibility-score models for implicit
iterative pose-refinement. The proposed method is evaluated
using a set of YCB-objects and a suction gripper, demonstrating
a success rate of 96.5% in simulation. Overall, our study presents
a promising approach to address the reorientation challenge
in manipulation by learning a conditional distribution, which
is an effective way to move towards more generalizable object
manipulation. For more results, checkout our website: https:
//utkarshmishra04.github.io/ReorientDiff.

I. INTRODUCTION

Rearranging objects in a desired pose is an important
skill necessary for daily activities at home as well as
for specific arrangement and packing applications in the
industry. Performing such a task requires extracting object
information from visual-sensor data and planning a pick-place
sequence [1], [2]. While a single-step pick-place sequence
is a viable solution, placing the object at a specific position
and orientation is not always feasible. Reorientation is a
helpful strategy when successfully changing an object’s pose
allows its placement at the target pose [3]. Reorientation
ensures feasible intermediate transition poses in scenarios
where there are no common grasps between the current pose
and an object’s desired placement pose.

In classical approaches, such a problem is usually tackled
by using trajectory planners [4] to plan motion from the
current pose to the desired pose via diverse candidate
intermediate poses. Such an exhaustive search is expensive on
time and is limited by choice of the number of intermediate
pose options. Recently, Wada et al. [3] proposed a data-
driven sampling-based solution to reorientation using learned
models that predict the feasibility score of an intermediate
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pose. While their method significantly improved the success
rate and planning time, the approach relied on the target
object’s specification and placement pose. Lately, with the
advances in language descriptor foundation models like
CLIP [5], which projects images and texts to a common
feature space, such specifications can be directly correlated
between visual information and suitable language commands,
thus empowering human-robot interaction. This motivated us
to explore grounding the problem statement of reorientation
on language and hence embed semantic knowledge of the
task with the spatial structure of the scene [6].

In this paper, we propose ReorientDiff, a diffusion model-
based reorientation pose generation pipeline for solving the
task proposed by [3] for picking objects from a cluttered
pile and placing it in the target pose specified through
language descriptions. The core idea of our approach is
to visualize the feasible intermediate poses as distributions.
Such a distribution can be captured by a diffusion model
and will be conditioned on the object’s current and target
pose, or in a more general multi-object scenario, on the pile
of pickable objects and the occupancy of the target location.
Note that diffusion models have also been successfully used
for motion planning [7], [8], grasp planning [9], and object
rearrangement [10] applications.

To enable interaction using natural language directly, we
use pre-trained CLIP embeddings with an object segmentation
model to structure object selection, pose prediction, and
target object segmentation networks for the task. Considering
the intermediate features as a generic scene and target
representation in reduced dimensionality, the diffusion model
samples reorientation poses conditioned on such features,
which are further implicitly refined by a feasibility-score-
based discriminator similar to the models used by [11], [3].
We combine a generic classifier-free conditional sampling [12]
with classifier-guided sampling [13] to sample from diffusion
models. For the tasks, we consider reorientation of objects in
the YCB dataset [14] that are feasible for suction grippers.
For each selected object, we choose target locations on
multiple shelf levels and four possible target orientations.
Our method samples reorientation poses in continuous space
without any discretization or candidate pose selection and
reaches a cumulative success rate of 96.5% as evaluated on
selected individual objects.

II. RELATED WORK

A. Object Manipulation: Pick and Place

While traditional methods have tried to solve the pick-and-
place task using grasp planning [15], [16], [17] with known
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Reorient the power drill to face front and place it on the middle shelf

Reorient the pitcher base to face front and place it in the middle shelf

Fig. 1: Reorientation for precise target placement The above figure represents the phenomenon of reorientation in which an object from a cluttered file
has to be placed precisely in a shelf (target position shown). As the object cannot be directly place at the target location, our proposed method, ReorientDiff,
samples a reorientation pose using a learned conditional distribution by a diffusion model. Such a proposed reorientation pose acts as a transition for
facilitating successful placement. We also consider and take advantage of the object dynamics, as introduced by Wada et al. [3], by which we ensure that
un-grasping an object in an unstable pose will eventually allow the object to settle at some favourable pose.

object geometries or using pose estimation methods [18], [19],
[20], the recent literature has focused more on vision-based
object manipulation [1], [21]. Solving single-step pick and
place tasks is typically achieved by planning grasp poses
using segmentation and depth maps of the object, where it
is considered that a picked object can be placed within the
region of interest (like in a box) [22], [23]. Recent studies have
also shown object rearrangement planning capabilities [6],
[24] where a target location is sampled based on some user-
specified goal. Then the whole-pipeline for generating a
collision free trajectory from current to target location is
planned. Some works have proposed object rearrangement as
a long horizon problem [2] consisting of multiple sequential
pick and place actions to achieve a desired configuration.

B. Language Models for Robotics

Language models like GPT-2 [25] and GPT-3 [26] have
proven to be quite effective in grounding the task’s semantics
with the scene’s spatial features using several foundation
models. One such foundation model is CLIP [5] which
encodes visual and language information into common repre-
sentation space and has been helpful in learning policies for
generalized pick-place tasks in planar tabletop [6] and 3D [24]
manipulation and for control of embodied AI agents [27],
[28]. Further, language models have also been used in
language-conditioned object rearrangement planning [10],
[29] and supplying high-level instructions for long-horizon
planning [30].

C. Reorientation and Regrasping

Reorientation is a vital capability required for solving
complex manipulation tasks. Prior research have explored
this direction by planning to reorient objects using extrinsic
supports [31], [32], which enables them to re-grasp the
object in a desired way. While [31] proposed a graph neural
network structure for pose sequencing and [32] used an end-
to-end point-cloud based model for predicting reorientation

poses, [33] proposed a heuristic based method for reorienting
rock structures in excavation. Recently, ReorientBot [3]
was proposed to solve the reorientation task using learned
feasibility prediction models and rejection sampling.

D. Generative Models for Robotics

Generative models like VAE have been used for planning
grasps [11] using visible point-cloud of objects and for
constructing embedding space for high-level tasks for various
downstream planning. Recently, diffusion models have been
used extensively in literature for trajectory planning from
imitation data [7], [8] and for generating target poses for
language-conditioned object rearrangement tasks [10]. With
language-guided scene and video generation applications,
such models have been used for generating task-videos for
robot learning [34] and generalizing to unseen scenarios [35].

III. PRELIMINARY: DIFFUSION MODELS

Consider samples x0 from an unknown data distribution
q(x0); diffusion models [36] learn to estimate the distribution
by a parameterized model pθ(x0) using the given samples.
The procedure is completed in two steps: the forward and the
reverse diffusion processes. The former continuously injects
Gaussian noise in x0 to create a Markov chain with latents
x1:K following transitions:

q(x1:K |x0) =

K∏
k=1

q(xk|xk−1), (1)

where q(xk|xk−1) = N (xk;
√
1− βkxk−1, βkI)

is the per-step noise injection following variance
schedule β1, . . . , βK . This leads to the distribution
q(xk|x0) = N (xk;

√
ᾱkx0, (1 − ᾱk) I) following

notations introduced in [37] as αk = 1 − βk and
ᾱk =

∏k
i=1 αi. Note that ᾱK ≈ 0 and thus xK ∼ N (0, I).

The reverse diffusion learns to denoise the data starting from
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Fig. 2: Joint Embedding Construction We use a pre-trained CLIP-ResNet50 and BPE-based Tokenizer with CLIP language model for obtaining a semantic
embedding of the tabletop RGB image and instruction prompt, respectively. While keeping CLIP layers frozen, we train another ResNet50 encoder for
spatial RGB-D observations and combine them with the semantic embeddings to obtain joint embeddings for visual-language inputs. We train these latent
representations with respect to the object of interest, placement pose, and object location (segmentation) predictions. It is worth noting that the predicted
object information is also used for predicting the placement pose and the target object segmentation. Further, the addition of skip-connection also ensures
that the segmentation map construction is accurate while filling up the embedding vector with only the necessary information. The proposed pipeline shown
above creates a latent space that is consistent with the three aspects of interest by minimizing information loss.

xK and following pθ(xk−1|xk) = N (xk−1;µθ(xk, k), βkI)
where

µθ(xk, k) =
1
√
αk

(
xk −

βk√
1− ᾱk

ϵθ(xk, k)
)
. (2)

The parameterized model ϵθ(xk, k) is called the score-
function, and it is trained to predict the perturbations and the
noising schedule by the score-matching objective [38]

argmin
θ

Ex0∼q,ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱkx0 +

√
1− ᾱkϵ)∥2

]
(3)

In particular, such a score function represents the gradients
of the learned probability distribution as

∇xk
log pθ(xk) = −

1√
1− ᾱk

ϵθ(xk, k). (4)

IV. REORIENTATION

Following the previous environment setup by Wada et
al. [3], we construct the reorientation scenario as a task of i)
selecting an object of interest from a pile of cluttered objects,
ii) calculating feasible grasp poses for picking, iii) calculating
grasp poses for placement with prior knowledge of the mesh
of the selected object and iv) finding suitable reorientation
poses using our proposed pipeline based on diffusion models.
This section describes the pipeline for creating a generic
scene and task embedding space, followed by generating
grasp poses and training the feasibility score models.

A. Constructing Generic Scene-Task Representations

We define a scene as the location and occupancy of the
place from where a target object should be picked and a
task as the language prompt containing the descriptions for
selecting the target object and deciding placement poses. A
top-down RGB-D camera provides an image I ∈ RH×W×3

and a heightmap H ∈ RH×W×1 as the description of the pile.
Motivated from previous work [6], [24] on learning semantic

and spatial embeddings, we use pre-trained CLIP foundation
model for obtaining semantic embeddings from the image I
and language L, and combine them with spatial embeddings
for target object segmentation to get a joint embedding Φ
as generic scene-task representation as shown in Fig. 2. The
embedding is further used to predict the target object as a
one-hot vector of all the objects of interest and the final
placement pose.

B. Sampling Grasp Poses

We generate grasp poses by following the classical ap-
proach of converting the heightmap into a point cloud
representation and eventually to a point-normal representation.
The predicted target object segmenatation of the scene is
then used to obtain the surface normals of the target object.
After performing an edge masking using the Laplacian of the
surface normals, the remaining point-normals on the surface
are feasible grasp poses. While we sample grasp poses η1
for picking the object from the pile in the aforementioned
manner, we assume that we have the mesh of the selected
object for sampling grasp poses η2 for placing the object at
the predicted pose.

C. Training Feasibility Score Models

Following prior works [11], [3], [29], a feasibility predic-
tion model is important for early-evaluation and rejection of
unfavourable samples. Such a feasibility model predicts the
probability of success of a given grasp pose in successfully
grasping an object in some candidate pose for a specified
scene representation. The phenomenon of grasp success
evaluation in dynamic reorientation pose, as addressed by [3],
is of particular interest for our setup. Modelling dynamics for
every object is indeed non-trivial and adds to the complexity;
hence the feasibility model implicitly takes care of the
dynamics of the object after deactivating the grasp. For
checking feasibility or the probability of success (y) of
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Fig. 3: Forward and Reverse Diffusion Process The above figure shows the forward diffusion and the reverse denoising and sampling process of
ReorientDiff. As described in Section V, following classifier-free guidance will result in high-likelihood samples with high-variance in terms of success
feasibility of the samples. Using the feasibility score gradients, we realize an implicit iterative pose refinement, as marked by the blue box in the figure.
This significantly decrease variance and ensure high success feasibility of the samples.

sampled grasps for candidate reorientation poses q, we train
two models:

• For predicting success of reorientation from the cur-
rent pose in a pile to a candidate pose given pick
grasp poses (η1) and scene representation, denoted
as M1(y|η1,q,Φ)

• For predicting success of post-grasp deactivation pose
from the candidate pose and placement grasp poses (η2),
denoted as M2(y|η2,q,Φ)

V. REORIENTDIFF: DIFFUSION FOR REORIENTATION

We aim to generate intermediate reorientation poses for
the target object, which enables successive placement at the
desired pose and is reachable from the current pose. We
introduce a diffusion model based approach to sample most
probable successful reorientation poses (q) conditioned on
the scene representation priors (Φ), denoted as p(q|Φ), which
already contains the spatial and semantic information about
the scene and the task. The denoising process can be further
flexibly conditioned by sampling from modified distributions
of the form

ph(q) ∝ p(q|Φ)h(q,Φ), (5)

where h(q,Φ) can represent several grasp success probability
heuristics. By separating the grasp success from reorientation
candidate sampling, the diffusion model trained for reorienta-
tion poses can be reused for varied selection of picking (η1)
and placement grasp poses (η2).

A. Classifier-free Conditional Pose Generation

Following the distribution defined in (5), we use classifier-
free guidance [12] to sample high-likelihood reorientation
poses for a particular scene-task representation. We train
a score-network [38], ϵθ(qk,Φ) ∝ ∇qk

log p(qk|Φ) , to
denoise from qK ∼ N (0, I) to possible reorientation
poses q0 from a K-step reverse diffusion denoising process.
For each step, we calculate ϵ̃k as

ϵ̃k = ϵθ(qk,Φ) + wc

(
ϵθ(qk,Φ)− ϵθ(qk, ø)

)
(6)

The scalar wc implicitly guides the reverse-diffusion towards
poses that best satisfy the scene-task representations. Further,

we calculate the successive samples for the next (k−1)th step
using the DDIM [37] sampling strategy and ϵ̃k as follows:

q̃k−1 ←−
√
ᾱk−1

(qk −
√
1− ᾱk ϵ̃k√
ᾱk

)
+
√

1− ᾱk−1 ϵ̃k

(7)

where, ᾱk is as described in Section III.

B. Feasibility Guided Pose Refinement

We use the two feasibility-score prediction models (M1

andM2), which are pre-trained for predicting grasp feasibility
for picking grasp, reorientation pose pairs and placement
grasp, reorientation pose pairs, respectively. In such a case,
the scores can be converted into probability distributions for
each heuristic, defined as, for each i = 1, 2,

hi ≡ p(y = 1|ηi,q,Φ)|Mi = exp
(
−(1−Mi(y|ηi,q,Φ))2

)
Following classifier-based guidance [13] formulation for

the heuristics, the reverse diffusion can be formulated as:

ph(qk|qk+1, y,Φ) ∝
p(qk|qk+1,Φ) p(y|η1, q̂k

0 ,Φ)|M1 p(y|η2, q̂k
0 ,Φ)|M2 (8)

where, q̂k
0 is the sample proposed at diffusion step k and

defined as:

q̂k
0 =

qk −
√
1− ᾱk ϵ̃k√
ᾱk

(9)

Considering Taylor first order approximations for heuristics
and standard reverse process Gaussian (µθ(qk, k,Φ), βkI) as
described in Section III, we get the new mean (µθ,h(qk, k,Φ))
for the distribution ph(qk|qk+1, y,Φ) in (8) as:

µθ,h(qk, k,Φ)

= µθ(qk, k,Φ) + βk

2∑
i=1

wi∇qk
log p(y|ηi,qk,Φ)|Mi

= µθ(qk, k,Φ)− βk

2∑
i=1

wi∇qk

[
1−Mi(y|ηi, q̂k

0 ,Φ)
]2
.

In view of (2), we then obtain the modified score

ϵk ←− ϵ̃k −
√
1− ᾱk gk
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Fig. 4: Visual Analysis of Scene-Task Network Performance The scene-
task network maps the visual (row 2) image of the pile (row 1) and
language (bottom row) inputs to a feature space which is used to predict
the placement location (row 4) and target object segmentation (row 3).

where gk = −βk

∑2
i=1 wi∇qk

[
1 −Mi(y|ηi, q̂k

0 ,Φ)
]2

. We
notice that injecting noise to gk, as in stochastic DDIM,
can slightly improve the performance. We calculate the final
qk−1 using the refined ϵk in (7). A visual clarification of the
forward and reverse diffusion is shown in Fig. 3.

VI. RESULTS: SIMULATION

Based on the environment setup as discussed in Section IV,
we create datasets, train diffusion and feasibility score
models and evaluate them in simulation for proper placement
conditions.

A. Dataset Generation and Training

We use PyBullet [39] and an OMPL [40] based motion
planner to solve for collision-free path between current pose
and a candidate reorientation pose and from the reorientation
pose to the ground-truth placement pose for diverse set of
YCB-objects and target locations. We sampled approximately
40000 candidate poses following Wada et al. [3]. The goal
properties were converted into modular language instructions,
and the success of pick and place for both the steps was
recorded. The scene and task properties were used to construct
the joint visual-language embedding space, which was further
used to train the feasibility score models using binary success
labels. Eventually, we train a conditional diffusion model
using only the successful reorientation poses. Such a diffusion
model is reusable for diverse set of grasp poses based on the
feasibility score models.

B. Performance Evaluation: Scene-Task Representation

To evaluate the quality of the scene-task embedding
network, we analyze the accuracy of the object selection and
placement pose prediction along with the error in the predicted

segmentation. We show a visual analysis in Fig. 4 where the
output segmentation and the predicted placement pose in the
shelf are shown for three scenes and tasks. For accurate shelf-
level estimation, we round each object’s predicted height to
the nearest shelf-level height, and a similar post-processing
is conducted for the object orientation. To add complexity,
although we consider only four orientations: front, back,
left and right, we discretize the possible orientations into 8
possible options and round the predicted orientation to the
nearest option.

Numerically, the object selection network was 100%
accurate, and the number of pixels wrongly classified was
about 1% of the complete image on average over 100 random
samples. The average error in predicting the height of the
target placement after post-processing is around 8 mm, and
the mean error in the yaw angle of the predicted pose is
0.3 rad.

C. Performance Evaluation: Diffusion with Guidance

The trained classifier-free conditional diffusion model
and the score feasibility models are used to perform the
reverse diffusion using the classifier-free guidance with and
without feasibility score guidance. Experiments comparing
the performance of both the methods are shown in Fig. 5 for
a set of YCB Objects [14] and different scene-task scenarios
where only 50 candidate poses are sampled and top 10 high-
likelihood poses are selected. The comparison shows that
while the classifier-free guidance is good enough to sample
high-likelihood reorientation poses, the primary purpose of the
feasibility score gradients is to reduce the variance in the pose
generation and ensure high success probability. A numerical
analysis of the overall success is shown and compared with
the rejection sampling based baseline [3] in Table I.

TABLE I: Success evaluation of the proposed method as compared to the
rejection sampling based baseline. The ReorientDiff algorithm was tested for
more than 300 different scene task settings consisting of equal distribution of
the selected objects and all the orientations. A task is considered a success
if it is completed at-least once in 4 random seeds.

Method Success (%)
Reorient

Success (%)
Place

Success (%)
Overall

ReorientBot 97.9 95.1 93.2
ReorientDiff
(w/o Guide) 97.4 86.3 85.8

ReorientDiff 98.9 96.5 94.8

The reorientation success percentage holds different rele-
vance as compared to the baseline. The baseline does two
step reverse rejection sampling where reorientation search is
conducted over candidates which are feasible for placement,
so there might be a scenario where there is no solution
possible. For the case of ReorientDiff, the reorientation
success measures the capability of the diffusion model to
generalize to poses which ensure reorientability and scope
for future placement. Higher reorientation success and lower
placement success is an indication that the model is short-
sighted and is giving importance to a single step success
metric. From Table I, we ensure high reorientability success
along with better placement success, even without any
candidate pose discretization. The overall success is based
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Fig. 5: Reverse Diffusion for Reorientation Pose Generation The reverse sampling process for 4 k-steps at k = 100, 64, 32, 0 for K = 256 in four
different scene-task scenarios comprising of the Cracker Box, Mustard Bottle and Sugar Box in different target orientations are shown above. The scenes are
shown in the left-side of every sub-figure and consists of the pile with the target object and the predicted placement location on the shelf. The language
prompt defining each of the tasks is mentioned below each sub-figure. It consists of either the absolute (the object’s name) or the relative (heaviest/lightest)
reference to the object and details about the target placement.

on the accurate placement of the object from the reoriented
pose, and it represents the successful completion of a task.
The metric is measured by calculating the difference between
the desired and the pose after final placement.

TABLE II: Success evaluation with different levels of discretization while
sampling using ReorientDiff.

ReorientDiff K Success (%)
Reorient

Success (%)
Place

Success (%)
Overall

K = 256 98.9 96.5 94.8
K = 100 99.3 92.4 91.5
K = 50 97.5 91.1 88.6

D. Performance Evaluation: K-Step Reverse Diffusion

Sampling from a trained diffusion models is flexible
and can be achieved using different levels of discretization
between xK ∼ N (0, I) to meaningful reorientation poses.
We perform the complete analysis for multiple values of
the number of reverse denoising steps K as shown in
Table II. It is evident that minimizing resolution degrades
overall performance, but even with much fewer resolutions,
ReorientDiff can reach a descent performance.

Following our analysis on performance, we explored the
time taken for overall planning of a successful reorientation
pose from a given scene and corresponding task information.
We provide the recorded timings for all of our ablations as
well as the baseline in Table III.

TABLE III: Computational analysis of the planning time for finding a suitable
reorientation pose for the proposed method, ReorientDiff, along with the
baseline and all conducted ablations.

Method Planning
Time (sec)

ReorientBot 2.5
ReorientDiff (w/o Guide) 2.7

ReorientDiff @ K = 256 5.3
ReorientDiff @ K = 100 2.5
ReorientDiff @ K = 50 1.5

Our findings show that ReorientDiff is computationally
heavy due to gradient calculations for reverse denoising steps.
Without using the guidance from the feasibility-score models,
classifier-free guidance requires similar time as the baseline,
ReorientBot. However, as we decrease the discretization
resolution, the planning time decreases significantly with
some trade-off in performance, as shown in Table II. We
believe that using higher-order solvers such as one proposed
in [41], similar level of performance as ReorientDiff (w/
K = 256) can be achieved at the computation cost of K = 50.
However, such an analysis is out of scope of the proposed
methodology. Hence, from all of our visual and empirical
analysis, ReorientDiff successfully proves that formulating the
problem of reorientation as learning a conditional distribution
is an effective way to move towards more generalizable object
manipulation.

VII. CONCLUSION

Diffusion models are powerful generative models capable of
modeling (conditional) distributions. In the proposed method,
ReorientDiff exploits the capabilities of such models to predict
reorientation poses conditioned on a compact scene-task
representation embedding containing information about the
target object and its placement location. Further, the samples
are refined using learned feasibility-score models to reduce
uncertainty and ensure success of the planned intermediate
poses. Considering as little as 10 reorientation poses, we
achieved an overall success rate of 96.5% across variety of
objects. We consider incorporating more efficient sampling
schemes and better generalization performance for unseen
objects and placement goals as a potential future work.
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